zhuxuhui

Professor

用户登录 | 国重室首页 | 中文 English

Our cathode interlayer Phen-NaDPO has been effectively utilized for optoelectronics

Our cathode interlayer Phen-NaDPO has been effectively utilized as a universal cathode modifier for organic optoelectronics. It is well soluble in weakly to strongly polar solvents from toluene to isopropanol and non-hygroscopic in the ambient. Phen-NaDPO has a high Tg of 116 oC.

Phen-NaDPO =  3-(6-diphenylphosphinyl(naphth-2-yl))-1,10-phenanthroline and currently is commercially available due to its versatality. 

This finding represents a simple & innovative approach to high Tg and high-performance phenanthroline-based electron-transport cathode interlayer materials for optoelectronics.

Commercial sources:
1-Material http://www.1-material.com/phen-nadpo-os0387/

未标题-1 拷贝

  1. Phosphine oxide derivatives as a robust component for optoelectronics. Ling-Ling Chen, Wan-Yi Tan, Xu-Hui Zhu,* Science Bulletin 2020, in press (News & Views). https://www.sciencedirect.com/science/article/pii/S2095927320305703
  2. Suppressing defects-induced non-radiative recombination for efficient perovskite solar cells through green anti-solvent engineering. Adv. Mater. 2020 (adma202003965).https://doi.org/10.1002/adma.202003965
  3. Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. Nature Materials (2020). https://www.nature.com/articles/s41563-020-00835-x
  4. Long-range exciton diffusion in molecular non-fullerene acceptors. Nature Communications (2020).https://www.nature.com/articles/s41467-020-19029-9
  5. A “σ-hole” containing volatile solid additive enabling 16.5% efficiency organic solar cells. iScience, 2020.  https://www.sciencedirect.com/science/article/pii/S2589004220301498
  6. 15.34% Efficiency All-Small-Molecule Organic Solar Cells with Improved Fill Factor Enabled by a Fullerene Additive. Energy Environ. Sci. 2020.   https://pubs.rsc.org/en/content/articlelanding/2020/ee/d0ee00714e#!divAbstract 
  7. Delicate Morphology Control Triggers 14.7% Efficiency All-Small-Molecule Organic Solar Cells. Adv. Energy Mater. 2020https://onlinelibrary.wiley.com/doi/epdf/10.1002/aenm.202001076
  8. (a) Inorganic and Hybrid Interfacial Materials for Organic and Perovskite Solar Cells. Adv. Energy Mater. 2020. https://doi.org/10.1002/aenm.202000910 (b) Use of the Phen-NaDPO:Sn(SCN)2 Blend as Electron Transport Layer Results to Consistent efficiency Improvements in Organic and Hybrid Perovskite Solar Cells. Adv. Funct. Mater. 2019, 1905810.https://www.onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201905810Di-fluorinated  (c) Triarylphosphine Oxide as Cathode Interfacial Material for Inverted Perovskite Solar Cells. Adv. Mater. Interfaces 2019. https://onlinelibrary.wiley.com/doi/full/10.1002/admi.201900434
  9. Stretchable and Transparent Conductive PEDOT:PSS‐Based Electrodes for Organic Photovoltaics and Strain Sensors Applications. Adv. Funct. Mater. 2020https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202001251
  10. Recent advances of non-fullerene organic electron transport materials in perovskite solar cells. J. Mater. Chem. A 2020, accepted.https://pubs.rsc.org/en/content/articlehtml/2020/ta/d0ta06500e
  11. Small molecule donors with different conjugated π linking bridges: Synthesis and photovoltaic properties. J. Semicond. 2000, in press.http://www.jos.ac.cn/article/id/70326ca9-1fa0-4833-b802-bb56905d3f71
  12. Cyano-functionalized Small-Molecule Acceptors for High-Efficiency Wide-Bandgap Organic Solar Cells. J. Mater. Chem. C 2000, https://doi.org/10.1039/D0TC02061C.
  13. Asymmetric end-capping strategy enables new non-fullerene acceptor for organic solar cells with efficiency over 10%. Chem. Commun. 2020.   https://pubs.rsc.org/en/content/articlehtml/2020/cc/d0cc01739f
  14. Difluorinated Oligothiophenes for High-Efficiency All-SmallMolecule Organic Solar Cells: Positional Isomeric Effect of Fluorine Substitution on Performance Variations
    Solar RRL, 2020, 4, 1900472.
    https://onlinelibrary.wiley.com/doi/abs/10.1002/solr.201900472
  15. Fluorinated oligothiophene donors for high-performance nonfullerene small-molecule organic solar cells. Sustainable Energy Fuels, 2020.https://doi.org/10.1039/D0SE00335B
  16. All-Small-Molecule Organic Solar Cells with an Ordered Liquid Crystalline Donor, Joule, 2019. https://doi.org/10.1016/j.joule.2019.09.009
  17. Efficient As-Cast Thick Film Small-Molecule Organic Solar Cell with Less Fluorination on Donor, Mater. Chem. Front. 2019https://pubs_rsc.org/en/content/articlehtml/2019/qm/c9qm00605b
  18. Effcient DPP Donor and Nonfullerene Acceptor Organic Solar Cells with High Photon-to-Current Ratio and Low Energetic Loss. Adv. Funct. Mater. 2019, 1902441. https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201902441;               https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fadfm.201902441&file=adfm201902441-sup-0001-S1.pdf
  19. Negligible Energy Loss During Charge Generation in Small-Molecule/Fullerene Bulk-Heterojunction Solar Cells Leads to Open-Circuit Voltage over 1.10 V.ACS Appl. Energy Mater. 2020. https://pubs.acs.org/doi/abs/10.1021/acsaem.8b02020
  20. Impact of Fullerene on the Photophysics of Ternary Small Molecule Organic Solar Cells, Adv. Energy Mater. 2019, 1901443. https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201901443.https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fadfm.201902441&file=adfm201902441-sup-0001-S1.pdf
  21. Key Parameters Requirements for Non‐Fullerene‐Based Organic Solar Cells with Power Conversion Efficiency >20%. Adv. Sci. 2019, 6, 1802028.
    https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201802028https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fadvs.201802028&file=advs1045-sup-0001-S1.pdf
  22. Dual Sensitizer and Processing-Aid Behavior of Donor Enables Efficient Ternary Organic Solar Cells. Joule 2019.
    https://www.sciencedirect.com/science/article/pii/S2542435119300388
  23. Tuning of the conformation of asymmetric nonfullerene acceptors for efficient organic solar cells. J. Mater. Chem. A, 2019. http://DOI: 10.1039/c9ta07634d
  24. Improving Molecular Planarity by Changing Alky Chain Position Enables 12.3% Efficiency All‐Small‐Molecule Organic Solar Cells with Enhanced Carrier Lifetime and Reduced Recombination, Solar RRL, 2019, 1900326. https://doi.org/10.1002/solr.201900326
  25. Higher Mobility and Carrier Lifimes in Solution‐Processable Small‐Molecule Ternary Solar Cells with 11% Efficiency. Adv. Energy Mater. 2019, 9, 1802836.  https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201802836;https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Faenm.201802836&file=aenm201802836-sup-0001-S1.pdf
  26. Simple near-Infrared Nonfullerene Acceptors Enable Organic Solar Cells with >9% Efficiency. ACS Appl. Mater. Interfaces 2019, 11 (7), pp 6717–6723. https://pubs.acs.org/doi/abs/10.1021/acsami.8b20567
  27. Terminal group engineering for small-molecule donors boosts the performance of nonfullerene organic solar cells. J. Mater. Chem. A 20197, 2541.  https://pubs.rsc.org/en/content/articlehtml/2019/ta/c8ta11420j;http://www.rsc.org/suppdata/c8/ta/c8ta11420j/c8ta11420j1.pdf
  28. Nonfullerene Acceptor for Organic Solar Cells with Chlorination on Dithieno[3,2-b:2′,3′-d]pyrrol Fused-RingACS Energy Lett. 2019, 4, pp 763–770.  https://pubs.acs.org.ccindex.cn/doi/abs/10.1021/acsenergylett.9b00147;https://pubs.acs.org.ccindex.cn/doi/suppl/10.1021/acsenergylett.9b00147
  29. End Group Tuning in Acceptor-Donor-Acceptor Nonfullerene Small molecules for High Fill Factor Organic Solar Cells. Adv. Funct. Mater. 2019, 1808429.  https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201808429; https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fadfm.201808429&file=adfm201808429-sup-0001-S1.pdf
  30. A 9,9′-bifluorenylidene derivative containing four 1,1-dicyanomethylene-3-indanone end-capped groups as an electron acceptor for organic photovoltaic cells, New J Chem. 2019.
    https://pubs.rsc.org/en/content/articlelanding/2019/nj/c9nj02604e/unauth#!divAbstract
  31. Isoindigo‐3,4‐Difluorothiophene Polymer Acceptors Yield “All‐Polymer” Bulk‐Heterojunction Solar Cells with over 7 % Efficiency. Angew. Chem. Ind. Ed. 2018, 57, 531-535. https://onlinelibrary.wiley.com/doi/abs/10.1002/ange.201709509;                   https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fanie.201709509&file=anie201709509-sup-0001-misc_information.pdf. ( DPO: Phen-NaDPO)
  32. High performance low-bandgap perovskite solar cells based on a high-quality mixed Sn–Pb perovskite film prepared by vacuum-assisted thermal annealing. J. Mater. Chem. A 2018, 6, 16347. https://pubs.rsc.org/en/content/articlehtml/2018/ta/c8ta05444d
  33. Stable Sn/Pb-Based Perovskite Solar Cells with a Coherent 2D/3D Interface. iScience 2018, 9, 337. https://www.sciencedirect.com/science/article/pii/S2589004218301937
  34. Carrier Transport and Recombination in Efficient “All‐Small‐Molecule” Solar Cells with the Nonfullerene Acceptor IDTBR. Adv. Energy Mater. 2018, 8, 1800264.  https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201800264;https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Faenm.201800264&file=aenm201800264-sup-0001-S1.pdf
  35. Wide‐Bandgap Small Molecular Acceptors Based on a Weak Electron‐Withdrawing Moiety for Efficient Polymer Solar Cells. Solar RRL 2018, 2, 1800120.  https://onlinelibrary.wiley.com/doi/full/10.1002/solr.201800120

微信图片_20200305231412

Tan, Wan-Yi

References

[1] Lending Triarylphosphine Oxide to Phenanthroline: a Facile Approach to High‐Performance Organic Small‐Molecule Cathode Interfacial Material for Organic Photovoltaics utilizing Air‐Stable Cathodes. Wan-Yi Tan et al. Adv. Funct. Mater.  2014, 24, 6540. https://doi.org/10.1002/adfm.201401685

[2] Roll to roll compatible fabrication of inverted organic solar cells with a self-organized charge selective cathode interfacial layer. J. Mater. Chem. A 2016, 4, 5032.  https://pubs.rsc.org/en/content/articlehtml/2016/ta/c6ta00391e

[3] Enhancing Performances of Solution-Processed Inverted Ternary Small-Molecule Organic Solar Cells: Manipulating the Host-Guest Donors and Acceptor Interaction. Wan-Yi Tan, et al. Solar RRL 2017, 1, 1600003 https://onlinelibrary.wiley.com/doi/pdf/10.1002/solr.201600003;https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fsolr.201600003&file=solr201600003-sup-0001-SupData-S1.pdf

[4] Improved quantum dot light-emitting diodes with a cathode interfacial layer. Organic Electronics 32 (2016) 89-93. https://www.sciencedirect.com/science/article/pii/S1566119916300647

We have been optimizing constantly the electron-transport materials in order to provide enhanced functionalities & operational stability!

Appending triphenyltriazine to 1,10-phenanthroline: a robust electron-transport material for stable organic light-emitting diodes. Science Bulletin 63 (2018) 446–451. https://doi.org/10.1016/j.scib.2018.03.003

http://202.38.194.251/materialnew/xxyj/kycg/yjjz/1cf43l0tma9e4.shtml

Molecular engineering of an electron-transport triarylphosphine oxide-triazine conjugate toward high-performance phosphorescent organic light-emitting diodes with remarkable stability. Sci. China Chem. 2020,7, 904-910.

http://engine.scichina.com/publisher/scp/journal/SCC/doi/10.1007/s11426-020-9714-0?slug=abstract

https://link.springer.com/article/10.1007/s11426-020-9714-0